Imaging Controversy in DCIS Surveillance

Hee Jung Shin, M.D

Department of Radiology and Research Institute of Radiology

University of Ulsan College of Medicine

Asan Medical Center

Incidence & Mortality Rate

Bassett et al. Breast Imaging 2011

Age-adjusted Incidence of DCIS

Kerlikowske K. Epidemiology of DCIS. JNCI 2010

DCIS

◆ Before screening MG – uncommon disease
◆ ≈ 5% of all breast cancers prior to 1984
● Present as palpable lump
◆ Screening MG has changed the demographics of DCIS

DCIS

 Recently DCIS represents 20%-30% of breast cancers annually

Present as nonpalpable, MG-detected lesions
Classic imaging finding - calcifications

Subtypes of DCIS

◆ Comedo-type DCIS
● Tends to be more aggressive
● Dead debris in center of duct → calcifications

Non-comedo type DCISCribriform

- Papillary
- Micropapillary
- Solid

Van Nuys Classification

Yamada T. Radiographics 2010;30:1183-1198

Subtypes of DCIS

High nuclear grade

• Large, pleomorphic nucleoli, frequent mitosis

Central necrosis

♦ Intermediate nuclear grade

• Nuclei that are neither low nor high grade

♦ Low nuclear grade

• Uniform cell with small nuclei, minimal nuclear pleomorphism, infrequent mitosis

• Usually cribriform or micropapillary pattern

Consensus Conference Committee. Cancer 1997;80:1798-1802

Central Necrosis with Calcification

Yamada T et al. Radiographics 2010;30:1183-1198

Pathology of DCIS

♦ Starts in TDLU

 Proliferation of malignant ductal epithelial cells without evidence of invasion through the

basement membrane

Predictors of Asso. Invasive Cancer

- ♦ Meta-analysis: 7350 DCIS at CNB of 52 studies
 - 1736 underestimates 25.9% (95% CI; 22.5%, 29.5%)
 - 14G automated device (vs. 11G VAB, *P*=.006)
 - High-grade lesion at CNB (vs. non-HG, *P*<.001)
 - Lesion size larger than 20 mm at imaging (P<.001)
 - BIRADS score of 4 or 5 (P=.005)
 - Mammographic mass (vs. Ca⁺⁺, *P*<.001)
 - Palpability (*P*<.001)

Brennan ME, et al. Radiology 2011;260:119-128

Predictors of Asso. Invasive Cancer

- HER2 overexpression as a predictor for transition from in situ to invasive cancer
 - 106 patients (mean, 53.4 years)
 - Overexpression of HER2 the only significant predictor for the presence of invasive disease (OR=6.4; *P*=.01)
 - More powerful predictor on invasion than lesion size or nuclear grade
 - HER2 expression may be up-regulated during in situ stage & down-regulated in more advanced stage
 Roses RE, Cancer Epidemiol Biomarkers Prev. 2009;18:1386-1389

MG features of DCIS

- ♦ M/C MG finding in DCIS microcalcifications
 (50%~75%)
- Other MG findings mass (10%), architectural distortion (7%~13%), asymmetry...
- MG sensitivity for detection of DCIS 87%~95%
 High-grade DCIS more likely to be visible on MG
 Low-grade DCIS more likely to manifest as noncalcified abnormalities

MG Feature of DCIS

- Calcifications = dead necrotic cells
 - Considerable overlap between the MG appearances of different histologic subtypes
 - Significant association between fine pleomorphic or fine linear-branching calcifications & necrosis
 - Significant correlation between round calcifications & presence of low-grade DCIS

Van Nuys group 2 DCIS (0.5 cm)

Van Nuys group 2 DCIS (3 cm)

Van Nuys group 3 DCIS

Intermediate-grade DCIS with microinvasion, HER2(+)

High-grade DCIS with necrosis

Comedo-type DCIS with necrosis

MG Features of DCIS

- Screening-detected calcified vs. noncalcified DCIS Mun HS, Shin HJ et al. Clin Radiology 2013;68:e27-35
 - 217 in 212 asymptomatic patients
 - On MG, noncalcified DCIS FN (49%) or mass
 (30%) vs. calcified DCIS calcifications alone (69%)
 - On US, all noncalcified DCIS vs. 62% of calcified DCIS – appeared as a mass
 - On pathology, high NG, necrosis, PR(+), HER2 (+) were more common in the calcified DCIS

Screening US-detected non-calcified DCIS

Low grade DCIS without necrosis

US Features of DCIS

- ♦ US features of DCIS
 - Calcified DCIS echogenic foci located within a mass or duct
 - Noncalcified DCIS more often in symptomatic patients & mass with microlobulated margin, no posterior acoustic features, pseudomicrocystic app.
 - High-frequency transducer, spectral compounding, speckle reduction algorithm aid to detect Ca⁺⁺

US of Calcified DCIS

- US can be performed • To evaluate for a possible invasive component • To assess the axillary LNs for evidence of invasion • To allow the possible US-guided biopsy ● US can identify 23%~45% of Ca⁺⁺ seen at MG Soo MS et al. AJR 2002;178:941-948 Yu PC et al. Breast 2011;20:495-500 • Malignant Ca⁺⁺ are more frequently visualized at US
 - than are those associated with benign disease

Moon WK et al. Radiogy 2000;217:849-854

58Y/ Screening MG-detected calcified DCIS

Intermediate grade DCIS with necrosis

A 35-year-old woman with palpable lump

High grade DCIS with necrosis

A 55-year-old woman with palpable lump

Intermediate grade DCIS with necrosis

US of Noncalcified DCIS

2%~23% of DCIS – mass or asymmetry on MG
 Noncalcified DCIS – MG occult palpable lesion, cause for nipple discharge, abnormality on screening US or finding in the evaluation of disease extent
 Up to 82% of noncalcified DCIS – symptomatic

Ikeda DM et al. Radiology 1989;172:661-666

• Mass – more frequent in non-HG than HG DCIS
Park JS et al. J Ultrasound Med 2010;29:1687-1697

 Mass – more common in symptomatic than screening-detected DCIS (calcifications & posterior shadowing)

Shin HJ et al. AJR 2008;190:516-525

A 41-year-old woman with palpable lump

Intermediate grade papillary DCIS

A 41-year-old asymptomatic woman

Intermediate grade DCIS

A 44-year-old woman with palpable lump & bloody discharge in right breast

High-grade DCIS with IDC (9 cm)

DCIS diagnosed at MR-directed US

◆ 5% of women who underwent preop. MRI –
 MG occult cancer in contralateral breast → half
 of which were DCIS

Liberman L et al. AJR 2003;180:333-341

 The rate of correlation between US & MR for nonmass enhancement is low - 12%~40%

 If no correlate is identified for suspicious nonmass enhancement, MR-guided biopsy should be performed

> Abe H et al. AJR 2010;194:370-377 Demartini WB et al. AJR 2009;192:1128-1134

DCIS diagnosed at MR-directed US

 For MR-detected lesion, typical malignant features (spiculation, angular margins, echogenic halo, & posterior shadowing) may be absent

• A lower threshold should be used at SLUS than at conventional diagnostic or screening US

A 45-year-old woman with known ILC in right breast

- Initially, multiple studies evaluated detection of DCIS on MRI
 - Based on failure to detect mammographically detected DCIS
 - Based on these data → MRI was limited in detecting DCIS

A 44-year-old asymptomatic woman

Intermediate grade DCIS with necrosis

Technology evolved – higher spatial resolution
 & improved spatial resolution

- More recent reports began to emerge showing different data
 - Data supporting that MRI may be superior to MG in detecting DCIS

 MRI surpasses both MG & US in the ability to detect the presence & extent of DCIS including noncalcified DCIS

> Kuhl CK et al. Lancet 2007;370:485-492 Berg WA et al. Radiology 2004;233:830-849

 M/C MR finding – nonmass clumped enhancement in a segmental, linear, or regional distribution

Detection sensitivity of DCIS on preop. MRI
 38 DCIS - 89% for MRI vs. 55% for MG

Berg WA. Radiology 2004;233:830-849

 167 DCIS - 92% for MRI vs. 56% for MG
 High-grade DCIS - 98% for MRI vs. 52% for MG *Kuhl CK et al. Lancet 2007;370:485-492*

MR surveillance trial of high risk women
67% for MRI vs. 50% for MG

Warner E. JAMA 2004;292:1317-1325

• 89% for MRI vs. 33% for MG

Kuhl CK. J Clin Oncol 2005;23:8469-8476

A 59-year-old woman

Intermediate grade DCIS (2.4 cm)

A 58-year-old woman with DCIS on stereotactic Bx

Intermediate grade DCIS (2.0 cm)

A 45-year-old woman with preop. MRI

Low grade DCIS without necrosis (0.5 cm)

A 50-year-old woman with Known IDC in right breast

A 50-year-old woman with right nipple discharge

A 66-year-old woman with left nipple discharge

High grade DCIS with necrosis (5 cm)

ADC as an Imaging Biomarker

- ADC as an MR imaging biomarker of lowgrade DCIS
 Jima M et al. Radiology 2011;260:364-372
 - 22 DCIS (7 low-G, 5 intermediate-G, 7 high-G, 3 microIDC)
 - A threshold of 1.30 X 10⁻³ mm²/sec for minimum ADC in the diagnosis of low-grade DCIS → 100% specificity & 100% PPV

		ADC (×10 ⁻³ mm ² /sec)			
Grade	Adjusted Mean	Median	Range	95% CI	PValue*
Low	1.42	1.41	1.07-1.76	1.31, 1.54	Ref
Intermediate	1.23	1.12	0.97-1.52	1.10, 1.36	.03
High	1.19	1.23	1.01-1.58	1.08, 1.30	<.01
Grade	Sample Mean	Ran	ge	95% CI	PValue*
Low	1.35	1.07	7–1.55	1.24, 1.46	Ref
Intermediate	1.09	0.98	3–1.26	0.97, 1.22	<.01
High	1.11	1.00)—1.26	1.01, 1.22	<.01

ADC as an Imaging Biomarker

- Detection of invasive component using ADC
 70 DCIS (51 pure DCIS vs. 19 DCIS-IC)
 - Minimum ADC for DCIS-IC (0.99±0.04X10⁻³ mm²/sec)–
 lower than that of pure DCIS (1.15±0.03X10⁻³ mm²/sec)
 - ADC difference for DCIS-IC (0.38±0.05X10⁻³ mm²/sec) higher than that of pure DCIS (0.17±0.03X10⁻³ mm²/sec)

Role of MRI in DCIS

 Disease extent frequently underestimated at MG due to incomplete lesion calcification

- COMICE (Comparative Effectiveness of MRI in breast cancer) trial Turnbull L. et al. Lancet 2010;375:563-571
 - 816 MRI group vs. 806 no MRI group
 - Has not shown any reduction in reoperation rate with use of preop. MRI

Role of MRI in DCIS

Retrospective study of 218 patients (64/154)

Davis KL et al. Ann Surg Oncol 2012;19:3270-3274

- No significant difference in reexcision rates (34% vs. 39%)
- Despite use of preop. MRI, 9% were converted to mastectomy d/t positive margins (8% for no MRI)

	MRI	No MRI	P value
Preoperative imaging	154	64	
Weight of excision (g)	48.7	49.1	NS
Patients with reexcisions	42/123 (34 %)	20/51 (39 %)	NS
Initial mastectomy	32/154 (20 %)	12/64 (19 %)	NS
Conversion to mastectomy	11/123 (8.9 %)	3/51 (7.8 %)	1
Overall mastectomy rate	43/154 (27.9 %)	15/64 (23.4 %)	NS

Role of MRI in DCIS

Prospective, 352 DCIS (217 MR vs. 135 no MR)

Pilewskie M, et al. Ann Surg Oncol 2013;20:1522-1529

- Initial op. type & number of reoperation similar
- Additional biopsy rate 38% in MRI group vs. 7% in no MRI group
- ≥ 2 additional biopsies 18% of MRI group vs. 2% of no-MRI group (*P*<.0001)
- Cancer diagnosis 26% of MRI & 33% of no-MRI
 (*P*=.73)
- Disease extent of DCIS 52% of MG were accurate compared with 41% of MRI

A 53-year-old asymptomatic woman

Two foci of intermediate grade DCIS

Take-home message

 DCIS is a preinvasive lesion to invasive breast cancer & makes up approximately 30% of breast malignancies detected by screening MG

♦ Majority of DCIS are detected on MG as Ca⁺⁺

 ◆ US features of DCIS are nonspecific and may be subtle → recognizing the US features will become important for detection of early-stage breast cancer

 Nonmass clumped enhancement in a linear or segmental distribution is the most common appearance of DCIS on MRI

